SENR/NRPy+: Black Hole Binaries on the Desktop

In collaboration with Zachariah B. Etienne Thomas W. Baumgarte

Phys. Rev. D 97, 064036 (2018)

http://tinyurl.com/SENRcode

Toward Black Hole Binaries on the Desktop

- 1. Extend BSSN-in-spherical-coordinates technique to broader class of static, singular coordinates
 - Implement this technique in new SENR/NRPy+ code
- 2. Singular coordinates that comove with binary
 - First moving puncture BHB evolutions in singular curvilinear coords
 - First BHB evolutions in corotating frame, without excision
- 3. BHBs in dynamical, <u>bispherical-like</u> coordinates

Coordinate Choices in NRPy+

Cartesian-like

Spherical-like Cylindrical-like **Bispherical-like**

Coordinate Choices in NRPy+

Cartesian-like

Bispherical-like

Previous Work: Dual Frame Approach

- Used by SXS Collaboration in SpEC code (PRD 74 104006)
 - Generalized harmonic formalism (GHF)
 - Wish to keep (excised) BHs stationary
 - Cannot directly & easily modify shift, so...
 - Promote spatial coordinates to explicit functions of time:
 - $x^i \rightarrow x^i(t)$
 - Add a control system to dynamically adjust coordinates to maintain corotation
 - Net result: A dual frame
 - Harmonic gauge controls spatial slice
 - xⁱ(t) controls numerical grid sampling

Previous Work: Dual Frame Approach

- Used by SXS Collaboration in SpEC code (PRD 74 104006)
 - Generalized harmonic formalism (GHF)
 - Wish to keep (excised) BHs stationary
 - Cannot directly & easily modify shift, so...
 - Promote spatial coordinates to explicit functions of time:
 - $X^i \rightarrow X^i(t)$
 - Add a control system to dynamically adjust coordinates to maintain corotation
 - Net result: A dual frame
 - Harmonic gauge controls spatial slice
 - xⁱ(t) controls numerical grid sampling

Our Approach: Adjust Shift Vector Directly!

- Moving puncture formalism:
 - Reference-metric formulation of BSSN, advective 1+log lapse, and modified advective gammadriver shift evolution
 - Unlike GHF, shift = free param
- Based on puncture position, adjust the shift vector to maintain corotation about CoM
- Net result: A single frame
 - Shift vector controls both numerical grid sampling and spatial slice

9

1.0

0.8

Conformal Factor W

0.0

How well is corotation maintained?

Corotation is maintained to ~2 parts in 10^6 (~ $10^{-3} \Delta \phi$)!

Hamiltonian Constraint Violation Comparison at $t / M \sim 9.9$ (¹/₄ Orbit)

Corotating

Corotating versus Non-corotating: (Bluer points → corotation has lower error)

Needed Diagnostics for Black Hole Binaries? Use the Einstein Toolkit!

Basic Diagnostics in SENR

- 1. Puncture tracker
- 2. Constraint violation monitors

State-of-the-art Diagnostics in ETK

- 1. Gravitational wave extraction a. Ψ_{A}
 - b. Mode-by-mode decomp.
- 2. Horizon diagnostics
 - a. Apparent horizon finder
 - b. Isolated horizon formalism
- 3. Global diags (surf & vol ints)
 - a. ADM Mass & J

Needed Diagnostics for Black Hole Binaries? Use the Einstein Toolkit!

Basic Diagnostics in SENR

- 1. Puncture tracker
- 2. Constraint violation monitors

State-of-the-art Diagnostics in ETK

- 1. Gravitational wave extraction a. Ψ_{A}
 - b. Mode-by-mode decomp.
- 2. Horizon diagnostics
 - a. Apparent horizon finder
 - b. Isolated horizon formalism
- 3. Global diags (surf & vol ints)
 - a. ADM Mass & J

Why reinvent the wheel?

Build a bridge instead!

Needed Diagnostics for Black Hole Binaries? Use the Einstein Toolkit!

Basic Diagnostics in SENR

- 1. Puncture tracker
- 2. Constraint violation monitors

New SENR → ETK interpolation bridge

2-Step Interpolation Bridge

- 1. Interpolate rescaled spacetime quantities in curvilinear basis to Cartesian-sampled grid
- 2. Transform to Cartesian basis

State-of-the-art Diagnostics in ETK

- 1. Gravitational wave extraction a. Ψ_{A}
 - b. Mode-by-mode decomp.
- 2. Horizon diagnostics
 - a. Apparent horizon finder
 - b. Isolated horizon formalism
- 3. Global diags (surf & vol ints)

a. ADM Mass & J

Waveform Extraction: Corot & Nocorot Agree Well! (Using SENR → ETK diagnostic bridge)

Corotation Works! Optimizing Coordinates for Corotation

Sinh-p & Sinh-z Cylindrical

Same, but with Squeezed- ϕ

Waveform Extraction: ETK (McLachlan) AMR vs SENR corot: Excellent agreement!

Summary and Outlook

- For the first time
 - Moving-puncture black hole binary evolutions, without excision, in singular coordinates and a <u>corotating frame</u>
- Corotating frame
 - Minimal dynamics \rightarrow smaller errors
 - BHB gravitational waveforms validated against
 - non-corotating frame simulation
 - Einstein Toolkit simulation
- Next Step: Conquer the consumer-grade desktop!
 - Bispherical-like, dynamical coordinates

